skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Trenchea, Catalin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This work is focused on the mathematical and computational modeling of bioconvection, which describes the mixing of fluid and micro-organisms exhibiting negative geotaxis movement under the force of gravity. The collective population moves towards the surface of the fluid, generating a Rayleigh–Taylor instability, where initial fingers of organisms plummet to the bottom. The inherent drive to swim vertically generates large collective flow patterns that persist in time. We model the flow using the Navier–Stokes equations for an incompressible, viscous fluid, coupled with the transport equation describing the concentration of the micro-organisms. We use a nonlinear semigroup approach to prove the existence of solutions. We propose a partitioned, second-order, time adaptive numerical method based on the Cauchy’s one-legged ‘-like’ scheme. We prove that the method is energy-stable, and for small time steps, the iterative procedure in the partitioned algorithm is linearly convergent. The numerical results confirm the expected second-order of accuracy. We also present a computational study of a chaotic system describing bioconvection of motile flagellates. 
    more » « less